Artificial Metalloenzymes as Catalysts for Oxidative Lignin Degradation
نویسندگان
چکیده
منابع مشابه
Artificial metalloenzymes for enantioselective catalysis.
Artificial metalloenzymes have emerged over the last decades as an attractive approach towards combining homogeneous catalysis and biocatalysis. A wide variety of catalytic transformations have been established by artificial metalloenzymes, thus establishing proof of concept. The field is now slowly transforming to take on new challenges. These include novel designs, novel catalytic reactions, ...
متن کاملArtificial metalloenzymes: proteins as hosts for enantioselective catalysis.
Enantioselective catalysis is one of the most efficient ways to synthesize high-added-value enantiomerically pure organic compounds. As the subtle details which govern enantioselection cannot be reliably predicted or computed, catalysis relies more and more on a combinatorial approach. Biocatalysis offers an attractive, and often complementary, alternative for the synthesis of enantiopure produ...
متن کاملImmobilized Lignin Peroxidase-Like Metalloporphyrins as Reusable Catalysts in Oxidative Bleaching of Industrial Dyes.
Synthetic and bioinspired metalloporphyrins are a class of redox-active catalysts able to emulate several enzymes such as cytochromes P450, ligninolytic peroxidases, and peroxygenases. Their ability to perform oxidation and degradation of recalcitrant compounds, including aliphatic hydrocarbons, phenolic and non-phenolic aromatic compounds, sulfides, and nitroso-compounds, has been deeply inves...
متن کاملArtificial metalloenzymes for enantioselective catalysis: recent advances.
Catalysis is the most efficient strategy for the preparation of enantiopure products. Homogeneous and enzymatic catalyses are in many respects complementary in terms of substrate and reaction scope, operating conditions, enantioselection mechanism, etc. In terms of performance optimization, directed evolution methodologies outperform combinatorial ligand libraries. With the aim of combining the...
متن کاملLipase active site covalent anchoring of Rh(NHC) catalysts: towards chemoselective artificial metalloenzymes.
A Rh(NHC) phosphonate complex reacts with the lipases cutinase and Candida antarctica lipase B resulting in the first (soluble) artificial metalloenzymes formed by covalent active site-directed hybridization. When compared to unsupported complexes, these new robust hybrids show enhanced chemoselectivity in the (competitive) hydrogenation of olefins over ketones.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: ACS Sustainable Chemistry & Engineering
سال: 2018
ISSN: 2168-0485,2168-0485
DOI: 10.1021/acssuschemeng.8b03568